363 research outputs found

    R&D Business Investment in the EU ICT Sector

    Get PDF
    The EU spends only about half as much on R&D in ICT as the US. This holds true both in absolute amounts and relative to the size of the economy. Indeed, the ICT sector alone is responsible for as much of the overall R&D investment gap as all other sectors combined. From the current data analysis, there are no signs of the ICT R&D investment gap closing. At ICT sector level, the R&D investment gap exists partly because the ICT sector is smaller in the EU than in the US and partly because of the lower R&D intensity of the sector in the EU. The lower R&D intensity is, in turn, primarily due to two sub-sectors: computer services and software on the one hand, and electronic measurement instruments on the other hand. On the positive side, and contrary to the rest of the ICT sector, these two sub-sectors also show strong R&D growth in the EU. Company data indicates that EU companies have R&D intensities similar to their US counterparts in every sub-sector, but are concentrated in less R&D intensive sub-sectors (e.g. telecom services). The US companies are also larger and more numerous in most sub-sectors. These data suggest that the ICT R&D gap between the US and the EU reflects, more than anything, a lack of European firms in the ICT sector. Among the member states, Finland and Sweden make the highest R&D effort in this sector, relative to their size. In general, Northern member states invest more than Southern member states, and the Western member states invest much more than the Eastern ones, which display very low levels of ICT R&D.JRC.J.4-Information Societ

    Interplay between Kondo effect and Ruderman-Kittel-Kasuya-Yosida interaction

    Full text link
    The interplay between the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction and the Kondo effect is expected to provide the driving force for the emergence of many phenomena in strongly correlated electron materials. Two magnetic impurities in a metal are the smallest possible system containing all these ingredients and define a bottom up approach towards a long term understanding of concentrated / dense systems. Here we report on the experimental and theoretical investigation of iron dimers buried below a Cu(100) surface by means of low temperature scanning tunnelling spectroscopy (STS) combined with density functional theory (DFT) and numerical renormalization group (NRG) calculations. The Kondo effect, in particular the width of the Abrikosov-Suhl resonance, is strongly altered or even suppressed due to magnetic coupling between the impurities. It oscillates as function of dimer separation revealing that it is related to the RKKY interaction mediated by the conduction electrons. Simulations based on density functional theory support this concept showing the same oscillation period and trends in the coupling strength as found in the experiment

    Design and implementation of a teleoperator’s workstation

    Get PDF
    Treball desenvolupat en el marc del programa "European Project Semester".The project aims to implement a way for a teleoperator to control an existing self-driving car if the autonomous driving algorithms fail to respond to the encountered situation. The project will rely on the existing code developed by the MechLab Team at the HTW in Dresden, who have converted a BMW i3 into a self-driving car using surround and proximity sensors and a homemade software that controls the vehicle's speed and steering. The car is also able to detect pedestrians and other obstacles thanks to a deep learning algorithm dedicated to this part. Teleoperation systems pose many challenges, such as providing the teleoperator with the same level of situational awareness as a driver in the car. The driver needs to focus more on the surroundings, and therefore teleoperated drivers will have to rest more often and take more breaks. To address this challenge, the teleoperation system will use high information density sensors, including LiDAR, radar, and ultrasonic sensors, to provide the driver with an overlay of detected obstacles and the predicted path, enhancing reality to compensate for latency in communication by taking some workload off the operator. Another big challenge is to switch between the autonomous and teleoperated driving modes, as there are different problems that can appear. Most noticeably, during the time it takes for the operator to get aware of the situation and respond to the call, the car must be able to safely stop and wait for instructions from the operator. The failure to do so could result in dangerous or even deadly situations for the autonomous vehicle’s occupants as well as for the other road users, who do not need to wait for the communication to be established. One of the last great challenges is allow stable and fast communication between the car and the teleoperator. This can be achieved by narrowing the data transmitted for example by reducing video quality in predefined cases, or by ensuring redundancy in the communication media. Nevertheless, a complete loss of communication is not impossible, so a protocol needs to be defined in order to safely halt the vehicle while waiting on the reconnection of the transmission. To fulfil this project, our team will use MATLAB and Simulink in combination with different toolboxes from the MathWorks company. We will try to develop a human-machine interface for the teleoperator, implement a way for the operator to take over control of the vehicle, build scenarios to test and simulate our different programs and much more. All of this is done in order to build safer and more reliable autonomous vehicles for the future.Incomin

    Ein Beitrag zur taktischen Verhaltensplanung für Fahrstreifenwechsel bei automatisierten Fahrzeugen

    Get PDF
    Automated driving within one lane is a fascinating experience. Yet, it is even more interesting to go a step ahead: Making automated lane changes without human driver interaction. This thesis presents a concept and implementation demonstrated in "Jack", the Audi A7 piloted driving concept vehicle. Given that automated driving is in the media every other day already, why is it still such a big issue to do tactical behavior planning for automated vehicles? It is one of the core areas where it is surprisingly obvious why humans are currently so much smarter than machines: Tactical driving behavior planning is a social task that requires cooperation, intention recognition, and complex situation assessment. Without complex cognitive capabilities in today's automated vehicles, it is core of this thesis to find simple algorithms that pretend intelligence in behavior planning. In fact, such behavior planning in automated driving is a constant trade-off between utility and risk: The vehicle has to balance value dimensions such as safety, legality, mobility, and additional aspects like creating user and third party satisfaction. This thesis provides a framework to boil down such abstract dimensions into a working implementation. Several of the foundations for this thesis were developed as part of the Stadtpilot project at TU Braunschweig. While there has been plenty of research on concepts being tested in perfect, simulated worlds only, the approaches in this thesis have been implemented and evaluated in real world traffic with uncertain and imperfect sensor data. The implementation has been tested, tweaked, and used in "Jack" for more than 50,000 km of automated driving in everyday traffic.Automatisiertes Fahren innerhalb eines Fahrstreifens ist eine faszinierende Erfahrung. Noch spannender ist es jedoch noch einen Schritt weiter zu gehen: Auch Fahrstreifenwechsel automatisiert auszuführen, ohne Interaktion mit einem Menschen als Fahrer. In dieser Dissertation wird hierfür ein Konzept und dessen Umsetzung in „Jack“ präsentiert, dem Audi A7 piloted driving concept Fahrzeug. Automatisiertes Fahren ist aktuell in den Medien in aller Munde. Warum ist es dennoch eine große Herausforderung taktische Verhaltensplanung für automatisierte Fahrzeuge wirklich umzusetzen? Es ist einer der Kernbereiche, in denen offensichtlich wird, warum Menschen aktuell Maschinen im Straßenverkehr noch weitaus überlegen sind: Taktische Verhaltensplanung ist eine soziale Aufgabe, welche Kooperation, das Erkennen von Absichten und der Bewertung komplexer Situationen bedarf. Mangels wirklicher kognitiver Fähigkeiten in den heutigen automatisierten Fahrzeugen ist es Kern dieser Dissertation Algorithmen zu finden, welche zumindest den Eindruck intelligenter Verhaltensplanung erzeugen. Eine solche Verhaltensplanung ist ein permanentes Abwägen von Nutzen und Risiken. Das Fahrzeug muss permanent Entscheidungen im Spannungsfeld zwischen Sicherheit, Legalität, Mobilität und weiten Aspekten wie Nutzerzufriedenheit und Zufriedenheit Dritter treffen. In dieser Dissertation wird ein Konzept entwickelt, um solche abstrakten Entscheidungsdimensionen in ein implementierbares Konzept herunterzubrechen. Viele Grundlagen dafür wurden im Rahmen des Stadtpilot Projekts der TU Braunschweig erarbeitet. In vorausgehenden Arbeiten wurden bereits viele Ansätze entwickelt und auf Basis von perfekten, simulierten Daten evaluiert. Der in dieser Arbeit präsentierte Ansatz ist in der Lage mit unsicherheits- und fehlerbehafteten Messdaten umzugehen. Der Ansatz aus dieser Dissertation wurde in dem automatisiert fahrenden Fahrzeug „Jack“ implementiert und bereits über 50.000 km im normalen Straßenverkehr genutzt und getestet

    Theory of real space imaging of Fermi surfaces

    Get PDF
    A scanning tunneling microscope can be used to visualize in real space Fermi surfaces with buried impurities far below substrates acting as local probes. A theory describing this feature is developed based on the stationary phase approximation. It is demonstrated how a Fermi surface of a material acts as a mirror focusing electrons that scatter at hidden impurities.Comment: 10 pages, 4 figure

    Formal Specification and Verification of JDK’s Identity Hash Map Implementation

    Get PDF
    Hash maps are a common and important data structure in efficient algorithm implementations. Despite their wide-spread use, real-world implementations are not regularly verified. In this paper, we present the first case study of the \IHM class in the Java JDK. We specified its behavior using the Java Modeling Language (JML) and proved correctness for the main insertion and lookup methods with \key, a semi-interactive theorem prover for JML-annotated Java programs. Furthermore, we report how unit testing and bounded model checking can be leveraged to find a suitable specification more quickly. We also investigated where the bottlenecks in the verification of hash maps lie for \key by comparing required automatic proof effort for different hash map implementations and draw conclusions for the choice of hash map implementations regarding their verifiability

    Identification of Model Uncertainty via Optimal Design of Experiments Applied to a Mechanical Press

    Full text link
    In engineering applications almost all processes are described with the help of models. Especially forming machines heavily rely on mathematical models for control and condition monitoring. Inaccuracies during the modeling, manufacturing and assembly of these machines induce model uncertainty which impairs the controller's performance. In this paper we propose an approach to identify model uncertainty using parameter identification, optimal design of experiments and hypothesis testing. The experimental setup is characterized by optimal sensor positions such that specific model parameters can be determined with minimal variance. This allows for the computation of confidence regions in which the real parameters or the parameter estimates from different test sets have to lie. We claim that inconsistencies in the estimated parameter values, considering their approximated confidence ellipsoids as well, cannot be explained by data uncertainty but are indicators of model uncertainty. The proposed method is demonstrated using a component of the 3D Servo Press, a multi-technology forming machine that combines spindles with eccentric servo drives

    The model case of an oxygen storage catalyst - non-stoichiometry, point defects and electrical conductivity of single crystalline CeO2-ZrO2-Y2O3 solid solutions

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The ternary solid solution CeO2–ZrO2 is known for its superior performance as an oxygen storage catalyst in exhaust gas catalysis (e.g. TWC), although the defect chemical background of these outstanding properties is not fully understood quantitatively. Here, a comprehensive experimental study is reported regarding defects and defect-related transport properties of cubic stabilized single crystalline (CexZr1−x)0.8Y0.2O1.9−δ (0 ≤ x ≤ 1) solid solutions as a model system for CeO2–ZrO2. The constant fraction of yttria was chosen in order to fix a defined concentration of oxygen vacancies and to stabilize the cubic fluorite-type lattice for all Ce/Zr ratios. Measurements of the total electrical conductivity, the partial electronic conductivity, the ionic transference number and the non-stoichiometry (oxygen deficiency, oxygen storage capacity) were performed in the oxygen partial pressure range −25 < lg pO2/bar < 0 and for temperatures between 500 °C and 750 °C. The total conductivity at low pO2 is dominated by electronic transport. A strong deviation from the widely accepted ideal solution based point defect model was observed. An extended point defect model was developed using defect activities rather than concentrations in order to describe the point defect reactions in CeO2–ZrO2–Y2O3 properly. It served to obtain good quantitative agreement with the measured data. By a combination of values for non-stoichiometries and for electronic conductivities, the electron mobility could be calculated as a function of pO2, ranging between 10−2 cm2 V−1 s−1 and 10−5 cm2 V−1 s−1. Finally, the origin of the high oxygen storage capacity and superior catalytic promotion performance at a specific ratio of n(Ce)/n(Zr) ≈ 1 was attributed to two main factors: (1) a strongly enhanced electronic conductivity in the high and medium pO2 range qualifies the material to be a good mixed conductor, which is essential for a fast oxygen exchange and (2) the equilibrium constant for the reduction exhibits a maximum, which means that the reduction is thermodynamically most favoured just at this composition

    A virtual centre at the interface of basic and applied weather and climate research

    Get PDF
    The Hans-Ertel Centre for Weather Research is a network of German universities, research institutes and the German Weather Service (Deutscher Wetterdienst, DWD). It has been established to trigger and intensify basic research and education on weather forecasting and climate monitoring. The performed research ranges from nowcasting and short-term weather forecasting to convective-scale data assimilation, the development of parameterizations for numerical weather prediction models, climate monitoring and the communication and use of forecast information. Scientific findings from the network contribute to better understanding of the life-cycle of shallow and deep convection, representation of uncertainty in ensemble systems, effects of unresolved variability, regional climate variability, perception of forecasts and vulnerability of society. Concrete developments within the research network include dual observation-microphysics composites, satellite forward operators, tools to estimate observation impact, cloud and precipitation system tracking algorithms, large-eddy-simulations, a regional reanalysis and a probabilistic forecast test product. Within three years, the network has triggered a number of activities that include the training and education of young scientists besides the centre's core objective of complementing DWD's internal research with relevant basic research at universities and research institutes. The long term goal is to develop a self-sustaining research network that continues the close collaboration with DWD and the national and international research community
    • …
    corecore